Solvothermal synthesis and characterization of Iron oxide nanoparticles


  • Jeyanthinath Mayandi


Iron oxide, Solvothermal synthesis, Surface morphological and Optical properties


In the present study, we investigated the crystallinity, surface morphology, and optical properties of iron oxide (Fe3O4) nanoparticles (NPs) formed by solvothermal synthesis. From powder XRD analysis, the Fe3O4 NPs were found to be an inverse spinel structure and highly crystalline nature. The surface morphology and particle size distribution were analyzed using a scanning electron microscope (SEM). The elemental compositions were confirmed using energy-dispersive X-ray spectroscopy (EDX). The optical characteristics of the Fe3O4 NPs were analyzed by UV-Vis spectroscopy. Overall, from the analysis, Fe3O4 NPs with tailored optical and structural properties can be easily formed by the solvothermal route to find potential applications in industries and the medical field.


Download data is not yet available.


D. Mangalam, D. Manoharadoss, P. Karuppasamy, S. Manickam Mahendran. Structural, Optical, Morphological and Dielectric Properties of Cerium Oxide Nanoparticles. Mat. Res. 2016: 19; 478-482.

P. Raj, K. Sadaiyandi, K. Kennedy, A. et al. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Res Lett. 2018: 13; 229.

Y. Yew, P. Shameli, K. Miyake, M. Kuwano, N. Khairudin, N. B. B. A. Mohamad, S. E. B., & Lee, K. X. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed. Nanoscale research letters.2016: 11; 1-7.

Malakootian, M. Askarpuor, A. Amirmahani, N. Nasiri, Z. Nasiri, A. Removal of Hexavalent Chromium from Aqueous Solutions Using Magnetic Nanoparticles Coated with Alumina and Modified by Cetyl Trimethyl Ammonium Bromide. Journals of Community Health Research. 2015:4; 177-193.

M. Cavas, R.K. Gupta, Ahmed A. Al-Ghamdi, Zarah H. Gafer, Farid El-Tantawy, F. Yakuphanoglu, Preparation and characterization of dye sensitized solar cell based on nanostructured Fe2O3. Mater. Lett. 2013: 105;106-109.

R.K. Gupta, K. Ghosh, R. Patel, P.K. Kahol, A novel method to synthesis iron oxide thin films. J. Alloys Compd. 2011: 509; 7529-7531.

R.K. Gupta, K. Ghosh, L. Dong, P.K. Kahol. Structural and magnetic properties of phase-controlled iron oxide rods. Mater. Lett. 2011: 65; 225-228.

S. Sun and H. Zeng. Size-Controlled Synthesis of Magnetite Nanoparticles. J. Am. Chem. Soc. 2002: 124; 8204 -8205.

S. Peng and S. Sun, Angew. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew Chem., Int. Ed. 46. 2007: 22; 4155-8.

B. Tian, X. Yu, Li and K. Li. Facile solvothermal synthesis of monodisperse Fe3O4nanocrystals with precise size control of one nanometre as potential MRI contrast agents, J. Mater. Chem. 2011: 21; 2476.

P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. NatureMater. 2006: 5 ;7; 567-73.

M. R. McCartney and D. J. Smith, Electron Holography: Phase Imaging with Nanometer Resolution. Annu. Rev. Mater. Res. 2007: 37; 729.

X.D. Liu, H. Chen, S.S. Liu, L.Q. Ye, Y.P. Li, Hydrothermal synthesis of superpara-magnetic Fe3O4 nanoparticles with ionic liquids as stabilizer. Mater. Res. Bull. 2015: 62 ; 217–221.

F.X. Chen, S.L. Xie, J.H. Zhang, R. Liu, Synthesis of spherical Fe3O4 magnetic nanoparticles by co-precipitation in choline chloride/urea deep eutectic sol-vent. Mater. Lett.2013: 112 ; 177–179.

H.T. Cui, Y. Liu, W.Z. Ren, Structure switch between α-Fe2O3, γ-Fe2O3and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles, Adv. Powder Technol. 2013: 24; 93–97.

K. Chinnaraj, A. Manikandan, P. Ramu, S. Arul Antony, P. Neeraja, Compara-tive studies of microwave-and sol–gel-assisted combustion methods of Fe3O4 nanostructures: structural, morphological, optical, magnetic, and catalytic prop-erties. J. Supercond. Nov. Magn. 2015: 28; 179–190.

Y.F. Li, R.L. Jiang, T.Y. Liu, H. Lv, L. Zhou, X.Y. Zhang, One-pot synthesis of grass-like Fe3O4nanostructures by a novel microemulsion-assisted solvother-mal method. Ceram. Int. 2014: 40 ; 1059–1063.

Z. Fekri Leila, N. Mohammad, H. Pour Keyhan, Green aqueous synthesis of mono, bis and trisdihydropyridines using nano Fe3O4under ultrasound irra-diation. Curr. Org. Synth. 2015: 12 ; 76–79.

J.H. Yang, B. Ramaraj Kuk Ro Yoon, Preparation and characterization of super-paramagnetic graphene oxide nanohybrids anchored with Fe3O4nanoparticles. J. Alloys Compd. 2014: 583; 128–133.

Z.P. Cheng, X.Z. Chu, J.Z. Yin, H. Zhong, J.M. Xu, Surfactantless synthesis of Fe3O4 magnetic nanobelts by a simple hydrothermal process. Mater. Lett. 2012: 75; 172–174.

Y. Takeno, Yasukazu Murakami, Takeshi Sato, Toshiaki Tanigaki, Hyun Soon Park, Daisuke Shindo, R. Matthew Ferguson, Kannan M. Krishnan, Morphology and magnetic flux distribution in superparamagnetic, single-crystalline Fe3O4 nanoparticle rings. Appl. Phys. Lett. 2014: 105 ; 183102.

S.J. Yan, J.K. Tang, P. Liu, Q. Gao, G.Y. Hong, L. Zhen, The influence of hollow structure on the magnetic characteristics for Fe3O4 submicron spheres. J. Appl. Phys. 2011: 109 ; 07B535.

K. He, F. Xiang Ma, C. Yan Xu, and J. Cumings, Mapping magnetic fields of Fe3O4 nanosphere assemblies by electron holography. Journal of Applied Physics. 2013: 113; 17B528

Wu, W., He, Q. & Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res Lett. 2008: 3; 397.

S.Vikram, R. Vasanthakumari, T. Suzuki. Investigations of suspension stability of iron oxide nanoparticles using time-resolved UV–visible spectroscopy. J Nanopart Res. 2016: 18; 272

Solvothermal synthesis and characterization of Iron oxide nanoparticles