Recent developments in gallium nitride technology for sensor applications

Authors

  • Muhammad Nihal Naseer National University of Sciences and Technology (NUST), Islamabad, Pakistan
  • Yasmin Abdul Wahab Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Ibrar Ullah National University of Sciences and Technology (NUST), Islamabad, Pakistan
  • Asad Ali Zaidi Nanotechnology& Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Mohd Rafie Johan Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.22452/mnij.vol1no1.3

Keywords:

Gallium nitride, Sensor, Chemical sensor, Hydrogen sensor, pH Sensor

Abstract

The human race of industrialization without oblivious to environmental contaminants has attracted attention of researchers for development of chemical sensors to detect, measure and mitigate drastically detrimental effects of anthropogenic pollutants. A wide congregation of chemical sensors is available in market but a few factors such as cost, accuracy, time of response, sensitivity, operating environment (temperature and pressure range) and power consumption urges to improve and optimize sensors. For this purpose, various varieties of material, covering polymers and semiconductors to nano particles, have been utilized for manufacturing of chemical sensors. Recently, a tremendous paradigm shift has been observed due to introduction of gallium nitride (GaN) in chemical sensing applications. The aim of this paper is to review recent unprecedented sensing utilizations of GaN, in terms of chemical sensing and power applications.

Downloads

Download data is not yet available.

References

Abdul Wahab, Y., Naseer, M. N., Abbasi, H., Siddiqi, M. M., Umair, T., & Zaidi, A. A. Capacitors: A Deliberate Insight Into State of Art and Future Prospects. In Reference Module in Earth Systems and Environmental Sciences: Elsevier. 2020.

Abdul Wahab, Y., Naseer, M. N., Zaidi, A. A., Umair, T., Khan, H., Siddiqi, M. M., & Javed, M. S. (2020). Super Capacitors in Various Dimensionalities: Applications and Recent Advancements. In Reference Module in Earth Systems and Environmental Sciences: Elsevier. 2020.

Bae, J., Shin, K., Kwon, O. S., Hwang, Y., An, J., Jang, A., Lee, C.-S. A brief review of refined chemical sensor systems based on conducting polymer–cyclodextrin hybrids. Journal of Industrial and Engineering Chemistry. 2019; 79: 19-28.

Chang, C.-H., Lin, K.-W., Lu, H.-H., Liu, R.-C., & Liu, W.-C. Hydrogen sensing performance of a Pd/HfO2/GaOx/GaN-based metal-oxide-semiconductor type Schottky diode. International Journal of Hydrogen Energy. 2018; 43(42): 19816-19824.

Chang, C., Kang, B., Wang, H., Ren, F., Wang, Y., Pearton, S., . . . Roberts, J. CO 2 detection using polyethylenimine/starch functionalised Al Ga N∕ GaN high electron mobility transistors. Applied Physics Letters. 2008; 92(23): 232102.

Chen, C.-P., Ganguly, A., Lu, C.-Y., Chen, T.-Y., Kuo, C.-C., Chen, R.-S., Chen, L.-C. Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. Analytical Chemistry. 2011; 83(6): 1938-1943.

Chen, K.-H., Kang, B. S., Wang, H., Lele, T., Ren, F., Wang, Y., Johnson, J. c-erbB-2 Sensing Using AlGaN/GaN High Electron Mobility Transistors for Breast Cancer Detection. ECS Transactions. 2009; 19(3): 57.

Chen, Y., Qian, C., Liu, C., Shen, H., Wang, Z., Peng, J., Chen, H. (2020). Nucleic acid amplification free biosensors for pathogen detection. Biosensors and Bioelectronics. 2020; 153; 112049.

Dey, A. Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: 2018; B, 229: 206-217.

Dong, Y., Son, D.-h., Dai, Q., Lee, J.-H., Won, C.-H., Kim, J.-G., Lu, H. (2018). AlGaN/GaN hetero-structure pH sensor with multi-sensing segments. Sensors and Actuators B: Chemical. 2018; 260: 134-139.

Eliza, S. A., & Dutta, A. K. Ultra-high sensitivity gas sensors based on GaN HEMT structures. Paper presented at the International Conference on Electrical & Computer Engineering (ICECE 2010). 2010.

Guo, Z., Wang, L., Hao, Z., & Luo, Y. pH sensor based on an AlGaN/GaN HEMT structure. Procedia Engineering. 2012; 27: 693-697.

Hermawan, A., Asakura, Y., Kobayashi, M., Kakihana, M., & Yin, S. High-temperature hydrogen gas sensing property of GaN prepared from α-GaOOH. Sensors and Actuators B: Chemical. 2018; 276: 388-396.

Hübert, T., Boon-Brett, L., Black, G., & Banach, U. Hydrogen sensors–a review. Sensors and Actuators B: Chemical. 2011; 157(2): 329-352.

Kachi, T., Kanechika, M., & Uesugi, T. Automotive applications of GaN power devices. Paper presented at the 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). 2011.

Kang, B. S., Ren, F., Wang, L., Lofton, C., Tan, W. W., Pearton, S., . . . Chow, P. Electrical detection of immobilised proteins with ungated AlGaN∕ GaN high-electron-mobility Transistors. Applied Physics Letters. 2005: 87(2): 023508.

Kim, H., & Jang, S. AlGaN/GaN HEMT based hydrogen sensor with a platinum nanonetwork gate electrode. Current Applied Physics. 2013; 13(8): 1746-1750.

Light, T. S., & Fletcher, K. S. Evaluation of the zirconia pH sensor at 95° C. Analytica Chimica Acta. 1985; 175: 117-126.

Liu, I.-P., Chang, C.-H., Huang, Y.-M., & Lin, K.-W. Hydrogen sensing characteristics of a Pd/Nickel oxide/GaN-based Schottky diode. International Journal of Hydrogen Energy. 2019; 33344(12): 5748-5754.

Lundström, I., Shivaraman, S., Svensson, C., & Lundkvist, L. A hydrogen-sensitive MOS field-effect transistor. Applied Physics Letters. 1975; 26(2): 55-57.

Luther, B., Wolter, S., & Mohney, S. High-temperature Pt Schottky diode gas sensors on n-type GaN. Sensors and Actuators B: Chemical. 1999; 56(1-2): 164-168.

Mauromicale, G., Raciti, A., Rizzo, S. A., Susinni, G., Fusillo, F., Palermo, A., Scollo, R. Si and GaN Devices in Quasi-Resonant Flyback converters for Wall Charger Applications. Paper presented at the 2019 IEEE Energy Conversion Congress and Exposition (ECCE). 2019.

Mhlongo, G. H., Motaung, D. E., Cummings, F. R., Swart, H., & Ray, S. S. A highly responsive NH 3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach. Scientific reports. 2019; 9(1): 1-18.

Morita, T., Tamura, S., Anda, Y., Ishida, M., Uemoto, Y., Ueda, T., . . . Ueda, D. 99.3% efficiency of three-phase inverter for the motor drive using GaN-based gate injection transistors. Paper presented at the 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). 2011.

Morita, T., Ujita, S., Umeda, H., Kinoshita, Y., Tamura, S., Anda, Y., Tanaka, T. GaN gate injection transistor with integrated Si Schottky barrier diode for highly efficient DC-DC converters. Paper presented at the 2012 International Electron Devices Meeting. 2012.

Naidu, T., Hatta, S. W. M., Soin, N., Rahman, S., & Wahab, Y. A. Study on breakdown characteristics of A1GaN/GaN-based HFETs. Paper presented at the 2018 IEEE International Conference on Semiconductor Electronics (ICSE). 2018.

Nigam, P. K., & Nigam, A. Botulinum toxin. Indian journal of dermatology. 2010; 55(1): 8.

Parish, G., Khir, F. L. M., Krishnan, N. R., Wang, J., Krisjanto, J. S., Li, H., Baker, M. V. Role of GaN cap layer for reference electrode free AlGaN/GaN-based pH sensors. Sensors and Actuators B: Chemical. 2019; 287: 250-257.

Pearton, S. J., Ren, F., & Chu, B. H. Functionalized GaN-Based Transistors for Biosensing. State of the Art in Biosensors: Environmental and Medical Applications. 2013; 225.

Qian, H., Huang, Y., Duan, X., Wei, X., Fan, Y., Gan, D., Chen, T. Fibre-optic surface plasmon resonance biosensor for detecting PDGF-BB in serum based on self-assembled aptamer and antifouling peptide monolayer. Biosensors and Bioelectronics. 2019; 140: 111350.

Sahoo, P., Suresh, S., Dhara, S., Saini, G., Rangarajan, S., & Tyagi, A. Direct label-free ultrasensitive impedimetric DNA biosensor using dendrimer functionalised GaN nanowires. Biosensors and Bioelectronics. 2013; 44: 164-170.

Sarangadharan, I., Regmi, A., Chen, Y.-W., Hsu, C.-P., Chen, P.-c., Chang, W.-H., Lee, G.-B. High sensitivity cardiac troponin I detection in a physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors. Biosensors and Bioelectronics. 2018; 100: 282-289.

Scott, M. J., Fu, L., Zhang, X., Li, J., Yao, C., Sievers, M., & Wang, J. Merits of gallium nitride-based power conversion. Semiconductor science and technology. 2013; 28(7): 074013.

Shahzad, S. J. H., Kumar, R. R., Zakaria, M., & Hurr, M. Carbon emission, energy consumption, trade openness and financial development in Pakistan: a revisit. Renewable and Sustainable Energy Reviews. 2017; 70: 185-192.

Siddiqi, M. M., Naseer, M. N., Abdul Wahab, Y., Hamizi, N. A., Badruddin, I. A., Hasan, M. A., Kamangar, S. Exploring E-Waste Resources Recovery in Household Solid Waste Recycling. Processes. 2020; 8(9): 1047.

Ueda, T., Uemoto, Y., Tanaka, T., & Ueda, D. GaN transistors for power switching and millimetre-wave applications. International Journal of High-Speed Electronics and Systems, 2009, 19(01), 145-152.

Wahab, Y. A., Fadzil, A., Soin, N., Fatmadiana, S., Chowdhury, Z. Z., Hamizi, N. A., Al-Douri, Y. Uniformity improvement by an integrated electrochemical-plating process for CMOS logic technologies. Journal of Manufacturing Processes. 2019; 38: 422-431.

Wahab, Y. A., Fatmadiana, S., Naseer, M. N., Johan, M. R., Hamizi, N. A., Sagadevan, S., Al Douri, Y. Metal oxides powder technology in dielectric materials. In Metal Oxide Powder Technologies. Elsevier. 2020; 385-399

Wahab, Y. A., Soin, N., & Hatta, S. W. M. Defects evolution involving interface dispersion approaches in high-k/metal-gate deep-submicron CMOS. Microelectronics Reliability. 2014; 54(9-10): 2334-2338.

Wahab, Y. A., Soin, N., Naseer, M. N., Hussin, H., Osman, R. A. M., Johan, M. R., Sagadevan, S. Junction engineering in two-stepped recessed SiGe MOSFETs for high-performance application. Paper presented at the AIP Conference Proceedings. 2020.

Wang, Y.-L., Chu, B., Chen, K., Chang, C., Lele, T., Tseng, Y., Dabiran, A. Botulinum toxin detection using Al Ga N∕ GaN high electron mobility transistors. Applied Physics Letters. 2008; 93(26): 262101.

Xue, D., Zhang, H., ul Ahmad, A., Liang, H., Liu, J., Xia, X., Xu, N. Enhancing the sensitivity of the reference electrode free AlGaN/GaN HEMT based pH sensors by controlling the threshold voltage. Sensors and Actuators B: Chemical. 2020; 306: 127609.

Yan, J.-T., & Lee, C.-T. Improved detection sensitivity of Pt/β-Ga2O3/GaN hydrogen sensor diode. Sensors and Actuators B: Chemical. 2009; 143(1): 192-197.

Yang, G., Xiao, Z., Tang, C., Deng, Y., Huang, H., & He, Z. Recent advances in biosensors for the detection of lung cancer biomarkers. Biosensors and Bioelectronics. 2019; 141: 111416.

Zadeh, D. H., Tanabe, S., Watanabe, N., & Matsuzaki, H. Characterisation of interface reaction of Ti/Al-based ohmic contacts on AlGaN/GaN epitaxial layers on GaN substrate. Japanese Journal of Applied Physics. 2016; 55(5S): 05FH06.

Zhan, X.-M., Hao, M.-L., Wang, Q., Li, W., Xiao, H.-L., Feng, C., Wang, Z.-G. Highly sensitive detection of deoxyribonucleic acid hybridisation using Au-gated AlInn/GaN high electron mobility transistor-based sensors. Chinese Physics Letters. 2017; 34(4): 047301.

Zhong, A., Sasaki, T., & Hane, K. Comparative study of Schottky diode type hydrogen sensors based on a honeycomb GaN nanonetwork and a planar GaN film. International Journal of Hydrogen Energy. 2014; 39(16): 8564-8575.

Recent developments in gallium nitride technology for sensor applications

Downloads

Published

25-08-2021

How to Cite

Naseer, M. N., Abdul Wahab, Y., Ullah, I., Zaidi, A. A., & Johan, M. R. (2021). Recent developments in gallium nitride technology for sensor applications. Malaysian NANO-An International Journal, 1(1), 28–46. https://doi.org/10.22452/mnij.vol1no1.3