First-Principles Investigation of structural, Optical, and Electrical properties of MgO Nanocrystals
DOI:
https://doi.org/10.22452/mnij.vol1no1.2Keywords:
DFT, MgO nanocrystals, Optical and Electrical propertiesAbstract
Nanocrystal interfaces can strongly influence the optical and electrical properties and charging trapping phenomena observed on oxide nanocrystal ensembles. The well-defined shape and controllable size distributions of MgO nanocrystals are a convenient system for studying these effects. Therefore, in the present work focused on the effect of temperature on the optical and electrical properties of magnesium oxide (MgO) nanocrystals, together with the responsible atomic centers, the bulk MgO is a study based on the first principle functional density theory (DFT) using PBE-GGA approximations. The absorption coefficient shows that MgO shows good coverage in the ultraviolet range. The bulk MgO is a direct bandgap nanocrystal at G point in the Brillion Zone despite the temperature applied values. The temperature is applied to alter the bandgap pattern and closes the bandgap at a high temperature. The PDOS and imaginary part of the dielectric function further confirm the insulator properties of the observed bandgap. Our results show that the optical properties are affected by the inconsistent temperature manners despite the different temperatures given to the system. Our absorption curve confirms that the nanocrystal is a good candidate for ultraviolet device application with a significantly high reflectivity percentage.
Downloads
References
J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, A.Kahn, Adv. Mater. 2012; 24: 5408
Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung, Appl. Mater. Interfaces. 2015; 7: 14303
Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Wille, O. Lupan, R. Adelung, Kona Powder Part J. 2014; 31: 92.
O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y.K. Mishra, L. Kienle, R. Adelung, I. Tiginyanu. Sens. Actuator B-Chem. 2015; 221: 544.
O. Lupan, V. Cretu, V. Postica, N. Ababii, O. Polonskyi, V. Kaidas, F. Schu¨ tt, Y.K. Mishra, E. Monaico, I. Tiginyanu, V. Sontea, T. Strunskus, F. Faupel, R. Adelung, Sens. Actuator B-Chem. 2016; 224: 434.
V. Cretu, V. Postica, A.K. Mishra, M. Hoppe, I. Tiginyanu, Y.K. Mishra, L. Chow, N.H. de Leeuw, R. Adelung, O. Lupan, J. Mater. Chem. A. 2016; 4: 6527
Neetu Singh, Prabhat Kumar Singh, Anuradha Shukla, Satyendra Singh, Poonam Tandon, Journal of Inorganic and Organometallic Polymers and Materials. 2016; 26: 1413–1420.
M.A. Fox, M. T. Dulay, Chem. Rev. 1993; 93: 341–357.
P. Pechy, T. Renouard, S.M. Zakeeruddin, S. R. Humphry-Baker, P. Comte, P. Liska, L.Cevey, E. Costa, V. Shklover, L. Spiccia, J. Am. Chem. Soc. 2001; 123: 1613–1624.
V.Piriyawong, V. Thongpool, P. Asanithi, & P. Limsuwan, Journal of Nanomaterials. 2012; 819403: 1–6.
M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez, Chem. Rev. 2004; 104; 4063
A. Bouhemadou, R. Khenata, Comput. Mater. Sci. 2007; 39: 803.
R. Saniz, L.H. Ye, T. Shishidou, J. Freeman. Phys. Rev. B. 2006; 74: 014209
L. Wang, T. Maxisch, G. Ceder. Phys. Rev. B. 2006; 73: 195107.
Nourozi, B., et al., Results in Physics.2019; 12: 2038-2043.
Wyckoff, R.W.G., Crystal structures. Krieger. 1964; 2.
Reddy, K.D., P. Kistaiah, and L. Iyengar, Journal of the Less Common Metals. 1983; 92: 81-84.
Singh, N., et al., Journal of Inorganic Organometallic Polymers Materials. 2016; 26; 1413- 1420.